Add documentation for tree.h and queue.h.
This commit is contained in:
parent
3796175a79
commit
8d87dabfa9
930
queue.3
Normal file
930
queue.3
Normal file
@ -0,0 +1,930 @@
|
||||
.\" $OpenBSD: queue.3,v 1.60 2014/09/13 01:09:31 guenther Exp $
|
||||
.\" $NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $
|
||||
.\"
|
||||
.\" Copyright (c) 1993 The Regents of the University of California.
|
||||
.\" All rights reserved.
|
||||
.\"
|
||||
.\" Redistribution and use in source and binary forms, with or without
|
||||
.\" modification, are permitted provided that the following conditions
|
||||
.\" are met:
|
||||
.\" 1. Redistributions of source code must retain the above copyright
|
||||
.\" notice, this list of conditions and the following disclaimer.
|
||||
.\" 2. Redistributions in binary form must reproduce the above copyright
|
||||
.\" notice, this list of conditions and the following disclaimer in the
|
||||
.\" documentation and/or other materials provided with the distribution.
|
||||
.\" 3. Neither the name of the University nor the names of its contributors
|
||||
.\" may be used to endorse or promote products derived from this software
|
||||
.\" without specific prior written permission.
|
||||
.\"
|
||||
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
.\" SUCH DAMAGE.
|
||||
.\"
|
||||
.\" @(#)queue.3 8.1 (Berkeley) 12/13/93
|
||||
.\"
|
||||
.Dd $Mdocdate: September 13 2014 $
|
||||
.Dt QUEUE 3
|
||||
.Os
|
||||
.Sh NAME
|
||||
.Nm SLIST_ENTRY ,
|
||||
.Nm SLIST_HEAD ,
|
||||
.Nm SLIST_HEAD_INITIALIZER ,
|
||||
.Nm SLIST_FIRST ,
|
||||
.Nm SLIST_NEXT ,
|
||||
.Nm SLIST_EMPTY ,
|
||||
.Nm SLIST_FOREACH ,
|
||||
.Nm SLIST_FOREACH_SAFE ,
|
||||
.Nm SLIST_INIT ,
|
||||
.Nm SLIST_INSERT_AFTER ,
|
||||
.Nm SLIST_INSERT_HEAD ,
|
||||
.Nm SLIST_REMOVE_AFTER ,
|
||||
.Nm SLIST_REMOVE_HEAD ,
|
||||
.Nm SLIST_REMOVE ,
|
||||
.Nm LIST_ENTRY ,
|
||||
.Nm LIST_HEAD ,
|
||||
.Nm LIST_HEAD_INITIALIZER ,
|
||||
.Nm LIST_FIRST ,
|
||||
.Nm LIST_NEXT ,
|
||||
.Nm LIST_EMPTY ,
|
||||
.Nm LIST_FOREACH ,
|
||||
.Nm LIST_FOREACH_SAFE ,
|
||||
.Nm LIST_INIT ,
|
||||
.Nm LIST_INSERT_AFTER ,
|
||||
.Nm LIST_INSERT_BEFORE ,
|
||||
.Nm LIST_INSERT_HEAD ,
|
||||
.Nm LIST_REMOVE ,
|
||||
.Nm LIST_REPLACE ,
|
||||
.Nm SIMPLEQ_ENTRY ,
|
||||
.Nm SIMPLEQ_HEAD ,
|
||||
.Nm SIMPLEQ_HEAD_INITIALIZER ,
|
||||
.Nm SIMPLEQ_FIRST ,
|
||||
.Nm SIMPLEQ_NEXT ,
|
||||
.Nm SIMPLEQ_EMPTY ,
|
||||
.Nm SIMPLEQ_FOREACH ,
|
||||
.Nm SIMPLEQ_FOREACH_SAFE ,
|
||||
.Nm SIMPLEQ_INIT ,
|
||||
.Nm SIMPLEQ_INSERT_AFTER ,
|
||||
.Nm SIMPLEQ_INSERT_HEAD ,
|
||||
.Nm SIMPLEQ_INSERT_TAIL ,
|
||||
.Nm SIMPLEQ_REMOVE_AFTER ,
|
||||
.Nm SIMPLEQ_REMOVE_HEAD ,
|
||||
.Nm TAILQ_ENTRY ,
|
||||
.Nm TAILQ_HEAD ,
|
||||
.Nm TAILQ_HEAD_INITIALIZER ,
|
||||
.Nm TAILQ_FIRST ,
|
||||
.Nm TAILQ_NEXT ,
|
||||
.Nm TAILQ_LAST ,
|
||||
.Nm TAILQ_PREV ,
|
||||
.Nm TAILQ_EMPTY ,
|
||||
.Nm TAILQ_FOREACH ,
|
||||
.Nm TAILQ_FOREACH_SAFE ,
|
||||
.Nm TAILQ_FOREACH_REVERSE ,
|
||||
.Nm TAILQ_FOREACH_REVERSE_SAFE ,
|
||||
.Nm TAILQ_INIT ,
|
||||
.Nm TAILQ_INSERT_AFTER ,
|
||||
.Nm TAILQ_INSERT_BEFORE ,
|
||||
.Nm TAILQ_INSERT_HEAD ,
|
||||
.Nm TAILQ_INSERT_TAIL ,
|
||||
.Nm TAILQ_REMOVE ,
|
||||
.Nm TAILQ_REPLACE
|
||||
.Nd implementations of singly-linked lists, doubly-linked lists, simple queues, and tail queues
|
||||
.Sh SYNOPSIS
|
||||
.In sys/queue.h
|
||||
.Pp
|
||||
.Fn SLIST_ENTRY "TYPE"
|
||||
.Fn SLIST_HEAD "HEADNAME" "TYPE"
|
||||
.Fn SLIST_HEAD_INITIALIZER "SLIST_HEAD head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SLIST_FIRST "SLIST_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SLIST_NEXT "struct TYPE *listelm" "FIELDNAME"
|
||||
.Ft int
|
||||
.Fn SLIST_EMPTY "SLIST_HEAD *head"
|
||||
.Fn SLIST_FOREACH "VARNAME" "SLIST_HEAD *head" "FIELDNAME"
|
||||
.Fn SLIST_FOREACH_SAFE "VARNAME" "SLIST_HEAD *head" "FIELDNAME" "TEMP_VARNAME"
|
||||
.Ft void
|
||||
.Fn SLIST_INIT "SLIST_HEAD *head"
|
||||
.Ft void
|
||||
.Fn SLIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SLIST_INSERT_HEAD "SLIST_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SLIST_REMOVE_AFTER "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SLIST_REMOVE_HEAD "SLIST_HEAD *head" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SLIST_REMOVE "SLIST_HEAD *head" "struct TYPE *elm" "TYPE" "FIELDNAME"
|
||||
.Pp
|
||||
.Fn LIST_ENTRY "TYPE"
|
||||
.Fn LIST_HEAD "HEADNAME" "TYPE"
|
||||
.Fn LIST_HEAD_INITIALIZER "LIST_HEAD head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn LIST_FIRST "LIST_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn LIST_NEXT "struct TYPE *listelm" "FIELDNAME"
|
||||
.Ft int
|
||||
.Fn LIST_EMPTY "LIST_HEAD *head"
|
||||
.Fn LIST_FOREACH "VARNAME" "LIST_HEAD *head" "FIELDNAME"
|
||||
.Fn LIST_FOREACH_SAFE "VARNAME" "LIST_HEAD *head" "FIELDNAME" "TEMP_VARNAME"
|
||||
.Ft void
|
||||
.Fn LIST_INIT "LIST_HEAD *head"
|
||||
.Ft void
|
||||
.Fn LIST_INSERT_AFTER "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn LIST_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn LIST_INSERT_HEAD "LIST_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn LIST_REMOVE "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn LIST_REPLACE "struct TYPE *elm" "struct TYPE *elm2" "FIELDNAME"
|
||||
.Pp
|
||||
.Fn SIMPLEQ_ENTRY "TYPE"
|
||||
.Fn SIMPLEQ_HEAD "HEADNAME" "TYPE"
|
||||
.Fn SIMPLEQ_HEAD_INITIALIZER "SIMPLEQ_HEAD head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SIMPLEQ_FIRST "SIMPLEQ_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SIMPLEQ_NEXT "struct TYPE *listelm" "FIELDNAME"
|
||||
.Ft int
|
||||
.Fn SIMPLEQ_EMPTY "SIMPLEQ_HEAD *head"
|
||||
.Fn SIMPLEQ_FOREACH "VARNAME" "SIMPLEQ_HEAD *head" "FIELDNAME"
|
||||
.Fn SIMPLEQ_FOREACH_SAFE "VARNAME" "SIMPLEQ_HEAD *head" "FIELDNAME" "TEMP_VARNAME"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_INIT "SIMPLEQ_HEAD *head"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_INSERT_AFTER "SIMPLEQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_INSERT_HEAD "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_INSERT_TAIL "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_REMOVE_AFTER "SIMPLEQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn SIMPLEQ_REMOVE_HEAD "SIMPLEQ_HEAD *head" "FIELDNAME"
|
||||
.Pp
|
||||
.Fn TAILQ_ENTRY "TYPE"
|
||||
.Fn TAILQ_HEAD "HEADNAME" "TYPE"
|
||||
.Fn TAILQ_HEAD_INITIALIZER "TAILQ_HEAD head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn TAILQ_FIRST "TAILQ_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn TAILQ_NEXT "struct TYPE *listelm" "FIELDNAME"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn TAILQ_LAST "TAILQ_HEAD *head" "HEADNAME"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn TAILQ_PREV "struct TYPE *listelm" "HEADNAME" "FIELDNAME"
|
||||
.Ft int
|
||||
.Fn TAILQ_EMPTY "TAILQ_HEAD *head"
|
||||
.Fn TAILQ_FOREACH "VARNAME" "TAILQ_HEAD *head" "FIELDNAME"
|
||||
.Fn TAILQ_FOREACH_SAFE "VARNAME" "TAILQ_HEAD *head" "FIELDNAME" "TEMP_VARNAME"
|
||||
.Fn TAILQ_FOREACH_REVERSE "VARNAME" "TAILQ_HEAD *head" "HEADNAME" "FIELDNAME"
|
||||
.Fn TAILQ_FOREACH_REVERSE_SAFE "VARNAME" "TAILQ_HEAD *head" "HEADNAME" "FIELDNAME" "TEMP_VARNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_INIT "TAILQ_HEAD *head"
|
||||
.Ft void
|
||||
.Fn TAILQ_INSERT_AFTER "TAILQ_HEAD *head" "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_INSERT_BEFORE "struct TYPE *listelm" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_INSERT_HEAD "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_INSERT_TAIL "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_REMOVE "TAILQ_HEAD *head" "struct TYPE *elm" "FIELDNAME"
|
||||
.Ft void
|
||||
.Fn TAILQ_REPLACE "TAILQ_HEAD *head" "struct TYPE *elm" "struct TYPE *elm2" "FIELDNAME"
|
||||
.Sh DESCRIPTION
|
||||
These macros define and operate on four types of data structures:
|
||||
singly-linked lists, simple queues, lists, and tail queues.
|
||||
All four structures support the following functionality:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
Insertion of a new entry at the head of the list.
|
||||
.It
|
||||
Insertion of a new entry after any element in the list.
|
||||
.It
|
||||
Removal of an entry from the head of the list.
|
||||
.It
|
||||
Forward traversal through the list.
|
||||
.El
|
||||
.Pp
|
||||
Singly-linked lists are the simplest of the four data structures
|
||||
and support only the above functionality.
|
||||
Singly-linked lists are ideal for applications with large datasets
|
||||
and few or no removals, or for implementing a LIFO queue.
|
||||
.Pp
|
||||
Simple queues add the following functionality:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
Entries can be added at the end of a list.
|
||||
.El
|
||||
.Pp
|
||||
However:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
All list insertions must specify the head of the list.
|
||||
.It
|
||||
Each head entry requires two pointers rather than one.
|
||||
.It
|
||||
Code size is about 15% greater and operations run about 20% slower
|
||||
than singly-linked lists.
|
||||
.El
|
||||
.Pp
|
||||
Simple queues are ideal for applications with large datasets and
|
||||
few or no removals, or for implementing a FIFO queue.
|
||||
.Pp
|
||||
All doubly linked types of data structures (lists and tail queues)
|
||||
additionally allow:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
Insertion of a new entry before any element in the list.
|
||||
.It
|
||||
Removal of any entry in the list.
|
||||
.El
|
||||
.Pp
|
||||
However:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
Each element requires two pointers rather than one.
|
||||
.It
|
||||
Code size and execution time of operations (except for removal) is about
|
||||
twice that of the singly-linked data-structures.
|
||||
.El
|
||||
.Pp
|
||||
Lists are the simplest of the doubly linked data structures and support
|
||||
only the above functionality over singly-linked lists.
|
||||
.Pp
|
||||
Tail queues add the following functionality:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
Entries can be added at the end of a list.
|
||||
.It
|
||||
They may be traversed backwards, at a cost.
|
||||
.El
|
||||
.Pp
|
||||
However:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
All list insertions and removals must specify the head of the list.
|
||||
.It
|
||||
Each head entry requires two pointers rather than one.
|
||||
.It
|
||||
Code size is about 15% greater and operations run about 20% slower
|
||||
than singly-linked lists.
|
||||
.El
|
||||
.Pp
|
||||
An additional type of data structure, circular queues, violated the C
|
||||
language aliasing rules and were miscompiled as a result.
|
||||
All code using them should be converted to another structure;
|
||||
tail queues are usually the easiest to convert to.
|
||||
.Pp
|
||||
In the macro definitions,
|
||||
.Fa TYPE
|
||||
is the name tag of a user defined structure that must contain a field of type
|
||||
.Li SLIST_ENTRY ,
|
||||
.Li LIST_ENTRY ,
|
||||
.Li SIMPLEQ_ENTRY ,
|
||||
or
|
||||
.Li TAILQ_ENTRY ,
|
||||
named
|
||||
.Fa FIELDNAME .
|
||||
The argument
|
||||
.Fa HEADNAME
|
||||
is the name tag of a user defined structure that must be declared
|
||||
using the macros
|
||||
.Fn SLIST_HEAD ,
|
||||
.Fn LIST_HEAD ,
|
||||
.Fn SIMPLEQ_HEAD ,
|
||||
or
|
||||
.Fn TAILQ_HEAD .
|
||||
See the examples below for further explanation of how these macros are used.
|
||||
.Sh SINGLY-LINKED LISTS
|
||||
A singly-linked list is headed by a structure defined by the
|
||||
.Fn SLIST_HEAD
|
||||
macro.
|
||||
This structure contains a single pointer to the first element on the list.
|
||||
The elements are singly linked for minimum space and pointer manipulation
|
||||
overhead at the expense of O(n) removal for arbitrary elements.
|
||||
New elements can be added to the list after an existing element or
|
||||
at the head of the list.
|
||||
A
|
||||
.Fa SLIST_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
SLIST_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be linked into the list.
|
||||
A pointer to the head of the list can later be declared as:
|
||||
.Bd -literal -offset indent
|
||||
struct HEADNAME *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
(The names
|
||||
.Li head
|
||||
and
|
||||
.Li headp
|
||||
are user selectable.)
|
||||
.Pp
|
||||
The
|
||||
.Fa HEADNAME
|
||||
facility is often not used, leading to the following bizarre code:
|
||||
.Bd -literal -offset indent
|
||||
SLIST_HEAD(, TYPE) head, *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_ENTRY
|
||||
macro declares a structure that connects the elements in the list.
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_INIT
|
||||
macro initializes the list referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The list can also be initialized statically by using the
|
||||
.Fn SLIST_HEAD_INITIALIZER
|
||||
macro like this:
|
||||
.Bd -literal -offset indent
|
||||
SLIST_HEAD(HEADNAME, TYPE) head = SLIST_HEAD_INITIALIZER(head);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_INSERT_HEAD
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the head of the list.
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_INSERT_AFTER
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
after the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_REMOVE_HEAD
|
||||
macro removes the first element of the list pointed by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_REMOVE_AFTER
|
||||
macro removes the list element immediately following
|
||||
.Fa elm .
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_REMOVE
|
||||
macro removes the element
|
||||
.Fa elm
|
||||
of the list pointed by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_FIRST
|
||||
and
|
||||
.Fn SLIST_NEXT
|
||||
macros can be used to traverse the list:
|
||||
.Bd -literal -offset indent
|
||||
for (np = SLIST_FIRST(&head); np != NULL; np = SLIST_NEXT(np, FIELDNAME))
|
||||
.Ed
|
||||
.Pp
|
||||
Or, for simplicity, one can use the
|
||||
.Fn SLIST_FOREACH
|
||||
macro:
|
||||
.Bd -literal -offset indent
|
||||
SLIST_FOREACH(np, head, FIELDNAME)
|
||||
.Ed
|
||||
.Pp
|
||||
The macro
|
||||
.Fn SLIST_FOREACH_SAFE
|
||||
traverses the list referenced by head in a
|
||||
forward direction, assigning each element in turn to var.
|
||||
However, unlike
|
||||
.Fn SLIST_FOREACH
|
||||
it is permitted to remove var as well
|
||||
as free it from within the loop safely without interfering with the traversal.
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_EMPTY
|
||||
macro should be used to check whether a simple list is empty.
|
||||
.Sh SINGLY-LINKED LIST EXAMPLE
|
||||
.Bd -literal
|
||||
SLIST_HEAD(listhead, entry) head;
|
||||
struct entry {
|
||||
...
|
||||
SLIST_ENTRY(entry) entries; /* Simple list. */
|
||||
...
|
||||
} *n1, *n2, *np;
|
||||
|
||||
SLIST_INIT(&head); /* Initialize simple list. */
|
||||
|
||||
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
||||
SLIST_INSERT_HEAD(&head, n1, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
||||
SLIST_INSERT_AFTER(n1, n2, entries);
|
||||
|
||||
SLIST_FOREACH(np, &head, entries) /* Forward traversal. */
|
||||
np-> ...
|
||||
|
||||
while (!SLIST_EMPTY(&head)) { /* Delete. */
|
||||
n1 = SLIST_FIRST(&head);
|
||||
SLIST_REMOVE_HEAD(&head, entries);
|
||||
free(n1);
|
||||
}
|
||||
|
||||
.Ed
|
||||
.Sh LISTS
|
||||
A list is headed by a structure defined by the
|
||||
.Fn LIST_HEAD
|
||||
macro.
|
||||
This structure contains a single pointer to the first element on the list.
|
||||
The elements are doubly linked so that an arbitrary element can be
|
||||
removed without traversing the list.
|
||||
New elements can be added to the list after an existing element,
|
||||
before an existing element, or at the head of the list.
|
||||
A
|
||||
.Fa LIST_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
LIST_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be linked into the list.
|
||||
A pointer to the head of the list can later be declared as:
|
||||
.Bd -literal -offset indent
|
||||
struct HEADNAME *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
(The names
|
||||
.Li head
|
||||
and
|
||||
.Li headp
|
||||
are user selectable.)
|
||||
.Pp
|
||||
The
|
||||
.Fa HEADNAME
|
||||
facility is often not used, leading to the following bizarre code:
|
||||
.Bd -literal -offset indent
|
||||
LIST_HEAD(, TYPE) head, *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_ENTRY
|
||||
macro declares a structure that connects the elements in the list.
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_INIT
|
||||
macro initializes the list referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The list can also be initialized statically by using the
|
||||
.Fn LIST_HEAD_INITIALIZER
|
||||
macro like this:
|
||||
.Bd -literal -offset indent
|
||||
LIST_HEAD(HEADNAME, TYPE) head = LIST_HEAD_INITIALIZER(head);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_INSERT_HEAD
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the head of the list.
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_INSERT_AFTER
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
after the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_INSERT_BEFORE
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
before the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_REMOVE
|
||||
macro removes the element
|
||||
.Fa elm
|
||||
from the list.
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_REPLACE
|
||||
macro replaces the list element
|
||||
.Fa elm
|
||||
with the new element
|
||||
.Fa elm2 .
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_FIRST
|
||||
and
|
||||
.Fn LIST_NEXT
|
||||
macros can be used to traverse the list:
|
||||
.Bd -literal -offset indent
|
||||
for (np = LIST_FIRST(&head); np != NULL; np = LIST_NEXT(np, FIELDNAME))
|
||||
.Ed
|
||||
.Pp
|
||||
Or, for simplicity, one can use the
|
||||
.Fn LIST_FOREACH
|
||||
macro:
|
||||
.Bd -literal -offset indent
|
||||
LIST_FOREACH(np, head, FIELDNAME)
|
||||
.Ed
|
||||
.Pp
|
||||
The macro
|
||||
.Fn LIST_FOREACH_SAFE
|
||||
traverses the list referenced by head in a
|
||||
forward direction, assigning each element in turn to var.
|
||||
However, unlike
|
||||
.Fn LIST_FOREACH
|
||||
it is permitted to remove var as well
|
||||
as free it from within the loop safely without interfering with the traversal.
|
||||
.Pp
|
||||
The
|
||||
.Fn LIST_EMPTY
|
||||
macro should be used to check whether a list is empty.
|
||||
.Sh LIST EXAMPLE
|
||||
.Bd -literal
|
||||
LIST_HEAD(listhead, entry) head;
|
||||
struct entry {
|
||||
...
|
||||
LIST_ENTRY(entry) entries; /* List. */
|
||||
...
|
||||
} *n1, *n2, *np;
|
||||
|
||||
LIST_INIT(&head); /* Initialize list. */
|
||||
|
||||
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
||||
LIST_INSERT_HEAD(&head, n1, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
||||
LIST_INSERT_AFTER(n1, n2, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert before. */
|
||||
LIST_INSERT_BEFORE(n1, n2, entries);
|
||||
/* Forward traversal. */
|
||||
LIST_FOREACH(np, &head, entries)
|
||||
np-> ...
|
||||
|
||||
while (!LIST_EMPTY(&head)) /* Delete. */
|
||||
n1 = LIST_FIRST(&head);
|
||||
LIST_REMOVE(n1, entries);
|
||||
free(n1);
|
||||
}
|
||||
.Ed
|
||||
.Sh SIMPLE QUEUES
|
||||
A simple queue is headed by a structure defined by the
|
||||
.Fn SIMPLEQ_HEAD
|
||||
macro.
|
||||
This structure contains a pair of pointers, one to the first element in the
|
||||
simple queue and the other to the last element in the simple queue.
|
||||
The elements are singly linked.
|
||||
New elements can be added to the queue after an existing element,
|
||||
at the head of the queue or at the tail of the queue.
|
||||
A
|
||||
.Fa SIMPLEQ_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
SIMPLEQ_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be linked into the queue.
|
||||
A pointer to the head of the queue can later be declared as:
|
||||
.Bd -literal -offset indent
|
||||
struct HEADNAME *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
(The names
|
||||
.Li head
|
||||
and
|
||||
.Li headp
|
||||
are user selectable.)
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_ENTRY
|
||||
macro declares a structure that connects the elements in
|
||||
the queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_INIT
|
||||
macro initializes the queue referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The queue can also be initialized statically by using the
|
||||
.Fn SIMPLEQ_HEAD_INITIALIZER
|
||||
macro like this:
|
||||
.Bd -literal -offset indent
|
||||
SIMPLEQ_HEAD(HEADNAME, TYPE) head = SIMPLEQ_HEAD_INITIALIZER(head);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_INSERT_AFTER
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
after the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_INSERT_HEAD
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the head of the queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_INSERT_TAIL
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the end of the queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_REMOVE_AFTER
|
||||
macro removes the queue element immediately following
|
||||
.Fa elm .
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_REMOVE_HEAD
|
||||
macro removes the first element
|
||||
from the queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_FIRST
|
||||
and
|
||||
.Fn SIMPLEQ_NEXT
|
||||
macros can be used to traverse the queue.
|
||||
The
|
||||
.Fn SIMPLEQ_FOREACH
|
||||
is used for queue traversal:
|
||||
.Bd -literal -offset indent
|
||||
SIMPLEQ_FOREACH(np, head, FIELDNAME)
|
||||
.Ed
|
||||
.Pp
|
||||
The macro
|
||||
.Fn SIMPLEQ_FOREACH_SAFE
|
||||
traverses the queue referenced by head in a
|
||||
forward direction, assigning each element in turn to var.
|
||||
However, unlike
|
||||
.Fn SIMPLEQ_FOREACH
|
||||
it is permitted to remove var as well
|
||||
as free it from within the loop safely without interfering with the traversal.
|
||||
.Pp
|
||||
The
|
||||
.Fn SIMPLEQ_EMPTY
|
||||
macro should be used to check whether a list is empty.
|
||||
.Sh SIMPLE QUEUE EXAMPLE
|
||||
.Bd -literal
|
||||
SIMPLEQ_HEAD(listhead, entry) head = SIMPLEQ_HEAD_INITIALIZER(head);
|
||||
struct entry {
|
||||
...
|
||||
SIMPLEQ_ENTRY(entry) entries; /* Simple queue. */
|
||||
...
|
||||
} *n1, *n2, *np;
|
||||
|
||||
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
||||
SIMPLEQ_INSERT_HEAD(&head, n1, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
||||
SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert at the tail. */
|
||||
SIMPLEQ_INSERT_TAIL(&head, n2, entries);
|
||||
/* Forward traversal. */
|
||||
SIMPLEQ_FOREACH(np, &head, entries)
|
||||
np-> ...
|
||||
/* Delete. */
|
||||
while (!SIMPLEQ_EMPTY(&head)) {
|
||||
n1 = SIMPLEQ_FIRST(&head);
|
||||
SIMPLEQ_REMOVE_HEAD(&head, entries);
|
||||
free(n1);
|
||||
}
|
||||
.Ed
|
||||
.Sh TAIL QUEUES
|
||||
A tail queue is headed by a structure defined by the
|
||||
.Fn TAILQ_HEAD
|
||||
macro.
|
||||
This structure contains a pair of pointers,
|
||||
one to the first element in the tail queue and the other to
|
||||
the last element in the tail queue.
|
||||
The elements are doubly linked so that an arbitrary element can be
|
||||
removed without traversing the tail queue.
|
||||
New elements can be added to the queue after an existing element,
|
||||
before an existing element, at the head of the queue, or at the end
|
||||
of the queue.
|
||||
A
|
||||
.Fa TAILQ_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
TAILQ_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be linked into the tail queue.
|
||||
A pointer to the head of the tail queue can later be declared as:
|
||||
.Bd -literal -offset indent
|
||||
struct HEADNAME *headp;
|
||||
.Ed
|
||||
.Pp
|
||||
(The names
|
||||
.Li head
|
||||
and
|
||||
.Li headp
|
||||
are user selectable.)
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_ENTRY
|
||||
macro declares a structure that connects the elements in
|
||||
the tail queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_INIT
|
||||
macro initializes the tail queue referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The tail queue can also be initialized statically by using the
|
||||
.Fn TAILQ_HEAD_INITIALIZER
|
||||
macro.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_INSERT_HEAD
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the head of the tail queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_INSERT_TAIL
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
at the end of the tail queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_INSERT_AFTER
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
after the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_INSERT_BEFORE
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
before the element
|
||||
.Fa listelm .
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_REMOVE
|
||||
macro removes the element
|
||||
.Fa elm
|
||||
from the tail queue.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_REPLACE
|
||||
macro replaces the list element
|
||||
.Fa elm
|
||||
with the new element
|
||||
.Fa elm2 .
|
||||
.Pp
|
||||
.Fn TAILQ_FOREACH
|
||||
and
|
||||
.Fn TAILQ_FOREACH_REVERSE
|
||||
are used for traversing a tail queue.
|
||||
.Fn TAILQ_FOREACH
|
||||
starts at the first element and proceeds towards the last.
|
||||
.Fn TAILQ_FOREACH_REVERSE
|
||||
starts at the last element and proceeds towards the first.
|
||||
.Bd -literal -offset indent
|
||||
TAILQ_FOREACH(np, &head, FIELDNAME)
|
||||
TAILQ_FOREACH_REVERSE(np, &head, HEADNAME, FIELDNAME)
|
||||
.Ed
|
||||
.Pp
|
||||
The macros
|
||||
.Fn TAILQ_FOREACH_SAFE
|
||||
and
|
||||
.Fn TAILQ_FOREACH_REVERSE_SAFE
|
||||
traverse the list referenced by head
|
||||
in a forward or reverse direction respectively,
|
||||
assigning each element in turn to var.
|
||||
However, unlike their unsafe counterparts,
|
||||
they permit both the removal of var
|
||||
as well as freeing it from within the loop safely
|
||||
without interfering with the traversal.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_FIRST ,
|
||||
.Fn TAILQ_NEXT ,
|
||||
.Fn TAILQ_LAST
|
||||
and
|
||||
.Fn TAILQ_PREV
|
||||
macros can be used to manually traverse a tail queue or an arbitrary part of
|
||||
one.
|
||||
.Pp
|
||||
The
|
||||
.Fn TAILQ_EMPTY
|
||||
macro should be used to check whether a tail queue is empty.
|
||||
.Sh TAIL QUEUE EXAMPLE
|
||||
.Bd -literal
|
||||
TAILQ_HEAD(tailhead, entry) head;
|
||||
struct entry {
|
||||
...
|
||||
TAILQ_ENTRY(entry) entries; /* Tail queue. */
|
||||
...
|
||||
} *n1, *n2, *np;
|
||||
|
||||
TAILQ_INIT(&head); /* Initialize queue. */
|
||||
|
||||
n1 = malloc(sizeof(struct entry)); /* Insert at the head. */
|
||||
TAILQ_INSERT_HEAD(&head, n1, entries);
|
||||
|
||||
n1 = malloc(sizeof(struct entry)); /* Insert at the tail. */
|
||||
TAILQ_INSERT_TAIL(&head, n1, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert after. */
|
||||
TAILQ_INSERT_AFTER(&head, n1, n2, entries);
|
||||
|
||||
n2 = malloc(sizeof(struct entry)); /* Insert before. */
|
||||
TAILQ_INSERT_BEFORE(n1, n2, entries);
|
||||
/* Forward traversal. */
|
||||
TAILQ_FOREACH(np, &head, entries)
|
||||
np-> ...
|
||||
/* Manual forward traversal. */
|
||||
for (np = n2; np != NULL; np = TAILQ_NEXT(np, entries))
|
||||
np-> ...
|
||||
/* Delete. */
|
||||
while ((np = TAILQ_FIRST(&head))) {
|
||||
TAILQ_REMOVE(&head, np, entries);
|
||||
free(np);
|
||||
}
|
||||
|
||||
.Ed
|
||||
.Sh NOTES
|
||||
It is an error to assume the next and previous fields are preserved
|
||||
after an element has been removed from a list or queue.
|
||||
Using any macro (except the various forms of insertion) on an element
|
||||
removed from a list or queue is incorrect.
|
||||
An example of erroneous usage is removing the same element twice.
|
||||
.Pp
|
||||
The
|
||||
.Fn SLIST_END ,
|
||||
.Fn LIST_END ,
|
||||
.Fn SIMPLEQ_END
|
||||
and
|
||||
.Fn TAILQ_END
|
||||
macros are deprecated; they provided symmetry with the historical
|
||||
.Fn CIRCLEQ_END
|
||||
and just expand to
|
||||
.Dv NULL .
|
||||
.Pp
|
||||
Trying to free a list in the following way is a common error:
|
||||
.Bd -literal -offset indent
|
||||
LIST_FOREACH(var, head, entry)
|
||||
free(var);
|
||||
free(head);
|
||||
.Ed
|
||||
.Pp
|
||||
Since
|
||||
.Va var
|
||||
is free'd, the FOREACH macros refer to a pointer that may have been
|
||||
reallocated already.
|
||||
A similar situation occurs when the current element is deleted
|
||||
from the list.
|
||||
In cases like these the data structure's FOREACH_SAFE macros should be used
|
||||
instead.
|
||||
.Sh HISTORY
|
||||
The
|
||||
.Nm queue
|
||||
functions first appeared in
|
||||
.Bx 4.4 .
|
||||
The historical circle queue macros were deprecated in
|
||||
.Ox 5.5 .
|
2
queue.h
2
queue.h
@ -1,3 +1,5 @@
|
||||
/* man ./queue.3 to see documentation on how to use this! */
|
||||
|
||||
/* $OpenBSD: queue.h,v 1.38 2013/07/03 15:05:21 fgsch Exp $ */
|
||||
/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
|
||||
|
||||
|
577
tree.3
Normal file
577
tree.3
Normal file
@ -0,0 +1,577 @@
|
||||
.\" $OpenBSD: tree.3,v 1.26 2014/09/08 01:27:55 schwarze Exp $
|
||||
.\"/*
|
||||
.\" * Copyright 2002 Niels Provos <provos@citi.umich.edu>
|
||||
.\" * All rights reserved.
|
||||
.\" *
|
||||
.\" * Redistribution and use in source and binary forms, with or without
|
||||
.\" * modification, are permitted provided that the following conditions
|
||||
.\" * are met:
|
||||
.\" * 1. Redistributions of source code must retain the above copyright
|
||||
.\" * notice, this list of conditions and the following disclaimer.
|
||||
.\" * 2. Redistributions in binary form must reproduce the above copyright
|
||||
.\" * notice, this list of conditions and the following disclaimer in the
|
||||
.\" * documentation and/or other materials provided with the distribution.
|
||||
.\" *
|
||||
.\" * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
.\" * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
.\" * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
.\" * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
.\" * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
.\" * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
.\" * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
.\" * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
.\" * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
.\" * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
.\" */
|
||||
.Dd $Mdocdate: September 8 2014 $
|
||||
.Dt TREE 3
|
||||
.Os
|
||||
.Sh NAME
|
||||
.Nm SPLAY_PROTOTYPE ,
|
||||
.Nm SPLAY_GENERATE ,
|
||||
.Nm SPLAY_ENTRY ,
|
||||
.Nm SPLAY_HEAD ,
|
||||
.Nm SPLAY_INITIALIZER ,
|
||||
.Nm SPLAY_ROOT ,
|
||||
.Nm SPLAY_EMPTY ,
|
||||
.Nm SPLAY_NEXT ,
|
||||
.Nm SPLAY_MIN ,
|
||||
.Nm SPLAY_MAX ,
|
||||
.Nm SPLAY_FIND ,
|
||||
.Nm SPLAY_LEFT ,
|
||||
.Nm SPLAY_RIGHT ,
|
||||
.Nm SPLAY_FOREACH ,
|
||||
.Nm SPLAY_INIT ,
|
||||
.Nm SPLAY_INSERT ,
|
||||
.Nm SPLAY_REMOVE ,
|
||||
.Nm RB_PROTOTYPE ,
|
||||
.Nm RB_PROTOTYPE_STATIC ,
|
||||
.Nm RB_GENERATE ,
|
||||
.Nm RB_GENERATE_STATIC ,
|
||||
.Nm RB_ENTRY ,
|
||||
.Nm RB_HEAD ,
|
||||
.Nm RB_INITIALIZER ,
|
||||
.Nm RB_ROOT ,
|
||||
.Nm RB_EMPTY ,
|
||||
.Nm RB_NEXT ,
|
||||
.Nm RB_PREV ,
|
||||
.Nm RB_MIN ,
|
||||
.Nm RB_MAX ,
|
||||
.Nm RB_FIND ,
|
||||
.Nm RB_NFIND ,
|
||||
.Nm RB_LEFT ,
|
||||
.Nm RB_RIGHT ,
|
||||
.Nm RB_PARENT ,
|
||||
.Nm RB_FOREACH ,
|
||||
.Nm RB_FOREACH_SAFE ,
|
||||
.Nm RB_FOREACH_REVERSE ,
|
||||
.Nm RB_FOREACH_REVERSE_SAFE ,
|
||||
.Nm RB_INIT ,
|
||||
.Nm RB_INSERT ,
|
||||
.Nm RB_REMOVE
|
||||
.Nd implementations of splay and red-black trees
|
||||
.Sh SYNOPSIS
|
||||
.In sys/tree.h
|
||||
.Pp
|
||||
.Fn SPLAY_PROTOTYPE "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn SPLAY_GENERATE "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn SPLAY_ENTRY "TYPE"
|
||||
.Fn SPLAY_HEAD "HEADNAME" "TYPE"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_INITIALIZER "SPLAY_HEAD *head"
|
||||
.Fn SPLAY_ROOT "SPLAY_HEAD *head"
|
||||
.Ft "int"
|
||||
.Fn SPLAY_EMPTY "SPLAY_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_NEXT "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_MIN "NAME" "SPLAY_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_MAX "NAME" "SPLAY_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_FIND "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_LEFT "struct TYPE *elm" "SPLAY_ENTRY NAME"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_RIGHT "struct TYPE *elm" "SPLAY_ENTRY NAME"
|
||||
.Fn SPLAY_FOREACH "VARNAME" "NAME" "SPLAY_HEAD *head"
|
||||
.Ft void
|
||||
.Fn SPLAY_INIT "SPLAY_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_INSERT "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn SPLAY_REMOVE "NAME" "SPLAY_HEAD *head" "struct TYPE *elm"
|
||||
.Pp
|
||||
.Fn RB_PROTOTYPE "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn RB_PROTOTYPE_STATIC "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn RB_GENERATE "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn RB_GENERATE_STATIC "NAME" "TYPE" "FIELD" "CMP"
|
||||
.Fn RB_ENTRY "TYPE"
|
||||
.Fn RB_HEAD "HEADNAME" "TYPE"
|
||||
.Fn RB_INITIALIZER "RB_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_ROOT "RB_HEAD *head"
|
||||
.Ft "int"
|
||||
.Fn RB_EMPTY "RB_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_NEXT "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_PREV "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_MIN "NAME" "RB_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_MAX "NAME" "RB_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_FIND "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_NFIND "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_LEFT "struct TYPE *elm" "RB_ENTRY NAME"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_RIGHT "struct TYPE *elm" "RB_ENTRY NAME"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_PARENT "struct TYPE *elm" "RB_ENTRY NAME"
|
||||
.Fn RB_FOREACH "VARNAME" "NAME" "RB_HEAD *head"
|
||||
.Fn RB_FOREACH_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
|
||||
.Fn RB_FOREACH_REVERSE "VARNAME" "NAME" "RB_HEAD *head"
|
||||
.Fn RB_FOREACH_REVERSE_SAFE "VARNAME" "NAME" "RB_HEAD *head" "TEMP_VARNAME"
|
||||
.Ft void
|
||||
.Fn RB_INIT "RB_HEAD *head"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_INSERT "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Ft "struct TYPE *"
|
||||
.Fn RB_REMOVE "NAME" "RB_HEAD *head" "struct TYPE *elm"
|
||||
.Sh DESCRIPTION
|
||||
These macros define data structures for different types of trees:
|
||||
splay trees and red-black trees.
|
||||
.Pp
|
||||
In the macro definitions,
|
||||
.Fa TYPE
|
||||
is the name tag of a user defined structure that must contain a field named
|
||||
.Fa FIELD ,
|
||||
of type
|
||||
.Li SPLAY_ENTRY
|
||||
or
|
||||
.Li RB_ENTRY .
|
||||
The argument
|
||||
.Fa HEADNAME
|
||||
is the name tag of a user defined structure that must be declared
|
||||
using the macros
|
||||
.Fn SPLAY_HEAD
|
||||
or
|
||||
.Fn RB_HEAD .
|
||||
The argument
|
||||
.Fa NAME
|
||||
has to be a unique name prefix for every tree that is defined.
|
||||
.Pp
|
||||
The function prototypes are declared with
|
||||
.Li SPLAY_PROTOTYPE ,
|
||||
.Li RB_PROTOTYPE ,
|
||||
or
|
||||
.Li RB_PROTOTYPE_STATIC .
|
||||
The function bodies are generated with
|
||||
.Li SPLAY_GENERATE ,
|
||||
.Li RB_GENERATE ,
|
||||
or
|
||||
.Li RB_GENERATE_STATIC .
|
||||
See the examples below for further explanation of how these macros are used.
|
||||
.Sh SPLAY TREES
|
||||
A splay tree is a self-organizing data structure.
|
||||
Every operation on the tree causes a splay to happen.
|
||||
The splay moves the requested node to the root of the tree and partly
|
||||
rebalances it.
|
||||
.Pp
|
||||
This has the benefit that request locality causes faster lookups as
|
||||
the requested nodes move to the top of the tree.
|
||||
On the other hand, every lookup causes memory writes.
|
||||
.Pp
|
||||
The Balance Theorem bounds the total access time for m operations
|
||||
and n inserts on an initially empty tree as O((m + n)lg n).
|
||||
The amortized cost for a sequence of m accesses to a splay tree is O(lg n).
|
||||
.Pp
|
||||
A splay tree is headed by a structure defined by the
|
||||
.Fn SPLAY_HEAD
|
||||
macro.
|
||||
A
|
||||
.Fa SPLAY_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
SPLAY_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be inserted into the tree.
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_ENTRY
|
||||
macro declares a structure that allows elements to be connected in the tree.
|
||||
.Pp
|
||||
In order to use the functions that manipulate the tree structure,
|
||||
their prototypes need to be declared with the
|
||||
.Fn SPLAY_PROTOTYPE
|
||||
macro,
|
||||
where
|
||||
.Fa NAME
|
||||
is a unique identifier for this particular tree.
|
||||
The
|
||||
.Fa TYPE
|
||||
argument is the type of the structure that is being managed
|
||||
by the tree.
|
||||
The
|
||||
.Fa FIELD
|
||||
argument is the name of the element defined by
|
||||
.Fn SPLAY_ENTRY .
|
||||
.Pp
|
||||
The function bodies are generated with the
|
||||
.Fn SPLAY_GENERATE
|
||||
macro.
|
||||
It takes the same arguments as the
|
||||
.Fn SPLAY_PROTOTYPE
|
||||
macro, but should be used only once.
|
||||
.Pp
|
||||
Finally,
|
||||
the
|
||||
.Fa CMP
|
||||
argument is the name of a function used to compare trees' nodes
|
||||
with each other.
|
||||
The function takes two arguments of type
|
||||
.Fa "struct TYPE *" .
|
||||
If the first argument is smaller than the second, the function returns a
|
||||
value smaller than zero.
|
||||
If they are equal, the function returns zero.
|
||||
Otherwise, it should return a value greater than zero.
|
||||
The compare function defines the order of the tree elements.
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_INIT
|
||||
macro initializes the tree referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The splay tree can also be initialized statically by using the
|
||||
.Fn SPLAY_INITIALIZER
|
||||
macro like this:
|
||||
.Bd -literal -offset indent
|
||||
SPLAY_HEAD(HEADNAME, TYPE) head = SPLAY_INITIALIZER(&head);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_INSERT
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
into the tree.
|
||||
Upon success,
|
||||
.Va NULL
|
||||
is returned.
|
||||
If a matching element already exists in the tree, the insertion is
|
||||
aborted, and a pointer to the existing element is returned.
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_REMOVE
|
||||
macro removes the element
|
||||
.Fa elm
|
||||
from the tree pointed by
|
||||
.Fa head .
|
||||
Upon success, a pointer to the removed element is returned.
|
||||
.Va NULL
|
||||
is returned if
|
||||
.Fa elm
|
||||
is not present in the tree.
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_FIND
|
||||
macro can be used to find a particular element in the tree.
|
||||
.Bd -literal -offset indent
|
||||
struct TYPE find, *res;
|
||||
find.key = 30;
|
||||
res = SPLAY_FIND(NAME, &head, &find);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_ROOT ,
|
||||
.Fn SPLAY_MIN ,
|
||||
.Fn SPLAY_MAX ,
|
||||
and
|
||||
.Fn SPLAY_NEXT
|
||||
macros can be used to traverse the tree:
|
||||
.Bd -literal -offset indent
|
||||
for (np = SPLAY_MIN(NAME, &head); np != NULL; np = SPLAY_NEXT(NAME, &head, np))
|
||||
.Ed
|
||||
.Pp
|
||||
Or, for simplicity, one can use the
|
||||
.Fn SPLAY_FOREACH
|
||||
macro:
|
||||
.Bd -literal -offset indent
|
||||
SPLAY_FOREACH(np, NAME, &head)
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn SPLAY_EMPTY
|
||||
macro should be used to check whether a splay tree is empty.
|
||||
.Sh RED-BLACK TREES
|
||||
A red-black tree is a binary search tree with the node color as an
|
||||
extra attribute.
|
||||
It fulfills a set of conditions:
|
||||
.Pp
|
||||
.Bl -enum -compact -offset indent
|
||||
.It
|
||||
every search path from the root to a leaf consists of the same number of
|
||||
black nodes,
|
||||
.It
|
||||
each red node (except for the root) has a black parent,
|
||||
.It
|
||||
each leaf node is black.
|
||||
.El
|
||||
.Pp
|
||||
Every operation on a red-black tree is bounded as O(lg n).
|
||||
The maximum height of a red-black tree is 2lg (n+1).
|
||||
.Pp
|
||||
A red-black tree is headed by a structure defined by the
|
||||
.Fn RB_HEAD
|
||||
macro.
|
||||
A
|
||||
.Fa RB_HEAD
|
||||
structure is declared as follows:
|
||||
.Bd -literal -offset indent
|
||||
RB_HEAD(HEADNAME, TYPE) head;
|
||||
.Ed
|
||||
.Pp
|
||||
where
|
||||
.Fa HEADNAME
|
||||
is the name of the structure to be defined, and struct
|
||||
.Fa TYPE
|
||||
is the type of the elements to be inserted into the tree.
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_ENTRY
|
||||
macro declares a structure that allows elements to be connected in the tree.
|
||||
.Pp
|
||||
In order to use the functions that manipulate the tree structure,
|
||||
their prototypes need to be declared with the
|
||||
.Fn RB_PROTOTYPE
|
||||
or
|
||||
.Fn RB_PROTOTYPE_STATIC
|
||||
macros,
|
||||
where
|
||||
.Fa NAME
|
||||
is a unique identifier for this particular tree.
|
||||
The
|
||||
.Fa TYPE
|
||||
argument is the type of the structure that is being managed
|
||||
by the tree.
|
||||
The
|
||||
.Fa FIELD
|
||||
argument is the name of the element defined by
|
||||
.Fn RB_ENTRY .
|
||||
.Pp
|
||||
The function bodies are generated with the
|
||||
.Fn RB_GENERATE
|
||||
or
|
||||
.Fn RB_GENERATE_STATIC
|
||||
macros.
|
||||
These macros take the same arguments as the
|
||||
.Fn RB_PROTOTYPE
|
||||
and
|
||||
.Fn RB_PROTOTYPE_STATIC
|
||||
macros, but should be used only once.
|
||||
.Pp
|
||||
Finally,
|
||||
the
|
||||
.Fa CMP
|
||||
argument is the name of a function used to compare trees' nodes
|
||||
with each other.
|
||||
The function takes two arguments of type
|
||||
.Fa "struct TYPE *" .
|
||||
If the first argument is smaller than the second, the function returns a
|
||||
value smaller than zero.
|
||||
If they are equal, the function returns zero.
|
||||
Otherwise, it should return a value greater than zero.
|
||||
The compare function defines the order of the tree elements.
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_INIT
|
||||
macro initializes the tree referenced by
|
||||
.Fa head .
|
||||
.Pp
|
||||
The red-black tree can also be initialized statically by using the
|
||||
.Fn RB_INITIALIZER
|
||||
macro like this:
|
||||
.Bd -literal -offset indent
|
||||
RB_HEAD(HEADNAME, TYPE) head = RB_INITIALIZER(&head);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_INSERT
|
||||
macro inserts the new element
|
||||
.Fa elm
|
||||
into the tree.
|
||||
Upon success,
|
||||
.Va NULL
|
||||
is returned.
|
||||
If a matching element already exists in the tree, the insertion is
|
||||
aborted, and a pointer to the existing element is returned.
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_REMOVE
|
||||
macro removes the element
|
||||
.Fa elm
|
||||
from the tree pointed by
|
||||
.Fa head .
|
||||
.Fn RB_REMOVE
|
||||
returns
|
||||
.Fa elm .
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_FIND
|
||||
and
|
||||
.Fn RB_NFIND
|
||||
macros can be used to find a particular element in the tree.
|
||||
.Fn RB_FIND
|
||||
finds the node with the same key as
|
||||
.Fa elm .
|
||||
.Fn RB_NFIND
|
||||
finds the first node greater than or equal to the search key.
|
||||
.Bd -literal -offset indent
|
||||
struct TYPE find, *res;
|
||||
find.key = 30;
|
||||
res = RB_FIND(NAME, &head, &find);
|
||||
.Ed
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_ROOT ,
|
||||
.Fn RB_MIN ,
|
||||
.Fn RB_MAX ,
|
||||
.Fn RB_NEXT ,
|
||||
and
|
||||
.Fn RB_PREV
|
||||
macros can be used to traverse the tree:
|
||||
.Bd -literal -offset indent
|
||||
for (np = RB_MIN(NAME, &head); np != NULL; np = RB_NEXT(NAME, &head, np))
|
||||
.Ed
|
||||
.Pp
|
||||
Or, for simplicity, one can use the
|
||||
.Fn RB_FOREACH
|
||||
or
|
||||
.Fn RB_FOREACH_REVERSE
|
||||
macros:
|
||||
.Bd -literal -offset indent
|
||||
RB_FOREACH(np, NAME, &head)
|
||||
.Ed
|
||||
.Pp
|
||||
The macros
|
||||
.Fn RB_FOREACH_SAFE
|
||||
and
|
||||
.Fn RB_FOREACH_REVERSE_SAFE
|
||||
traverse the tree referenced by head
|
||||
in a forward or reverse direction respectively,
|
||||
assigning each element in turn to np.
|
||||
However, unlike their unsafe counterparts,
|
||||
they permit both the removal of np
|
||||
as well as freeing it from within the loop safely
|
||||
without interfering with the traversal.
|
||||
.Pp
|
||||
The
|
||||
.Fn RB_EMPTY
|
||||
macro should be used to check whether a red-black tree is empty.
|
||||
.Sh EXAMPLES
|
||||
The following example demonstrates how to declare a red-black tree
|
||||
holding integers.
|
||||
Values are inserted into it and the contents of the tree are printed
|
||||
in order.
|
||||
Lastly, the internal structure of the tree is printed.
|
||||
.Bd -literal -offset 3n
|
||||
#include <sys/tree.h>
|
||||
#include <err.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
struct node {
|
||||
RB_ENTRY(node) entry;
|
||||
int i;
|
||||
};
|
||||
|
||||
int
|
||||
intcmp(struct node *e1, struct node *e2)
|
||||
{
|
||||
return (e1->i < e2->i ? -1 : e1->i > e2->i);
|
||||
}
|
||||
|
||||
RB_HEAD(inttree, node) head = RB_INITIALIZER(&head);
|
||||
RB_GENERATE(inttree, node, entry, intcmp)
|
||||
|
||||
int testdata[] = {
|
||||
20, 16, 17, 13, 3, 6, 1, 8, 2, 4, 10, 19, 5, 9, 12, 15, 18,
|
||||
7, 11, 14
|
||||
};
|
||||
|
||||
void
|
||||
print_tree(struct node *n)
|
||||
{
|
||||
struct node *left, *right;
|
||||
|
||||
if (n == NULL) {
|
||||
printf("nil");
|
||||
return;
|
||||
}
|
||||
left = RB_LEFT(n, entry);
|
||||
right = RB_RIGHT(n, entry);
|
||||
if (left == NULL && right == NULL)
|
||||
printf("%d", n->i);
|
||||
else {
|
||||
printf("%d(", n->i);
|
||||
print_tree(left);
|
||||
printf(",");
|
||||
print_tree(right);
|
||||
printf(")");
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
main()
|
||||
{
|
||||
int i;
|
||||
struct node *n;
|
||||
|
||||
for (i = 0; i < sizeof(testdata) / sizeof(testdata[0]); i++) {
|
||||
if ((n = malloc(sizeof(struct node))) == NULL)
|
||||
err(1, NULL);
|
||||
n->i = testdata[i];
|
||||
RB_INSERT(inttree, &head, n);
|
||||
}
|
||||
|
||||
RB_FOREACH(n, inttree, &head) {
|
||||
printf("%d\en", n->i);
|
||||
}
|
||||
print_tree(RB_ROOT(&head));
|
||||
printf("\en");
|
||||
return (0);
|
||||
}
|
||||
.Ed
|
||||
.Sh NOTES
|
||||
Trying to free a tree in the following way is a common error:
|
||||
.Bd -literal -offset indent
|
||||
SPLAY_FOREACH(var, NAME, &head) {
|
||||
SPLAY_REMOVE(NAME, &head, var);
|
||||
free(var);
|
||||
}
|
||||
free(head);
|
||||
.Ed
|
||||
.Pp
|
||||
Since
|
||||
.Va var
|
||||
is free'd, the
|
||||
.Fn FOREACH
|
||||
macro refers to a pointer that may have been reallocated already.
|
||||
Proper code needs a second variable.
|
||||
.Bd -literal -offset indent
|
||||
for (var = SPLAY_MIN(NAME, &head); var != NULL; var = nxt) {
|
||||
nxt = SPLAY_NEXT(NAME, &head, var);
|
||||
SPLAY_REMOVE(NAME, &head, var);
|
||||
free(var);
|
||||
}
|
||||
.Ed
|
||||
.Sh AUTHORS
|
||||
The author of the tree macros is
|
||||
.An Niels Provos .
|
Loading…
x
Reference in New Issue
Block a user