final ver.

This commit is contained in:
Felicia Seo 2022-11-14 20:19:30 -05:00
parent b48ada3663
commit 20ae0f9ec2

365
mm.c
View File

@ -1,38 +1,48 @@
/*
* mm.c - Dynamic Memory Allocator
*
* This is a segregated free list implementation with multiple
* lists to hold different block sizes. The size ranges for our 8 lists * are powers of 2, with
* the smallest size on the lower bound being 8 words,
* This is an external, segregated free list implementation with multiple lists that hold blocks of
* different size ranges. The size ranges for our 8 lists are determined by powers of 2.
* - 1st list holds blocks that are 8 * 1 = 8 words.
* - 2nd list holds blocks that are 8 * 2 = 16 words. (the constant 8 is the minimum block size)
* - 3rd list holds blocks that are 8 * 4 = 32 words.
* (and so on)
*
* A seperate list is used to store the sizes, and is checked when a
* free block is added to a list.
* When a free block is inserted to a list, it's placed in the front, and when a free block is
* removed from a list, it's taken from the back. In other words, last in, first out (LIFO) was
* implemented.
*
* Both allocated and free blocks are stored in the heap
* with the pointer heap_listp.
* Each block has a header and a footer, which
* store the size in 31 bits, and 1 bit for determining whether it is
* free.
*
* Blocks have a payload which holds hold necessary data and a list_elem struct so blocks can be stored in lists
* The lists are stored in an array (free_lists) based on their max size.
*
* An array is used to store the max sizes (list_sizes), and is checked when a free block is added
* to a list.
*
* Both allocated and free blocks use the same structure (block) and are stored in the heap with the
* pointer heap_listp.
* - Each block has a header and a footer, which store the size in 31 bits, and 1 bit for determining
* whether it is free.
* - Blocks have a payload which holds hold necessary data.
* - They also have a list_elem struct so blocks can be stored in lists.
*/
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stddef.h>
#include "mm.h"
#include "memlib.h"
#include "list.h"
#include "config.h"
struct boundary_tag {
int inuse:1;
int size:31;
};
/* FENCE is used for heap prologue/epilogue. */
/*
* FENCE is used for heap prologue/epilogue.
*/
const struct boundary_tag FENCE = {
.inuse = 1,
.size = 0
@ -44,184 +54,204 @@ struct block {
struct list_elem elem;
};
static struct block *heap_listp = 0;
/* Basic constants and macros */
#define WSIZE sizeof(struct boundary_tag) /* Word and header/footer size (bytes) */
/*
* Basic constants and macros:
*/
#define WSIZE sizeof(struct boundary_tag) // Word and header/footer size (in bytes)
#define DSIZE 2*WSIZE
#define MIN_BLOCK_SIZE_WORDS 8 /* Minimum block size in words */
#define CHUNKSIZE (1<<10) /* Extend heap by this amount (words) */
#define NUM_LISTS 8 /* Number of free lists */
#define MIN_BLOCK_SIZE_WORDS 8 // Minimum block size (in words)
#define CHUNKSIZE (1<<10) // Extend heap by this amount (in words)
#define NUM_LISTS 8 // Number of free lists
static inline size_t max(size_t x, size_t y) {
return x > y ? x : y;
}
static size_t align(size_t size) {
return (size + ALIGNMENT - 1) & ~(ALIGNMENT - 1);
}
/*
* Global variables:
*/
static struct block *heap_listp = 0;
static struct list free_lists[NUM_LISTS];
static size_t list_sizes[NUM_LISTS];
/* Function prototypes for internal helper routines */
/*
* Function prototypes for internal helper routines:
*/
static struct block *extend_heap(size_t words);
static void place(struct block *blck, size_t asize);
static struct list* find_list(int not_empty, size_t size);
static struct block *find_fit(size_t num_words);
static struct block *coalesce(struct block *bp);
/* Given a block, obtain previous's block footer.
Works for left-most block also. */
/*
* Given a block, obtains previous's block footer. Works for left-most block also.
*/
static struct boundary_tag * prev_blk_footer(struct block *blk) {
return &blk->header - 1;
}
/* Return if block is free */
/*
* Returns if block is free.
*/
static bool blk_free(struct block *blk) {
return !blk->header.inuse;
}
/* Return size of block is free */
/*
* Returns size of block.
*/
static size_t blk_size(struct block *blk) {
return blk->header.size;
}
/* Given a block, obtain pointer to previous block.
Not meaningful for left-most block. */
/*
* Given a block, obtains pointer to previous block. Not meaningful for left-most block.
*/
static struct block *prev_blk(struct block *blk) {
struct boundary_tag *prevfooter = prev_blk_footer(blk);
assert(prevfooter->size != 0);
return (struct block *)((void *)blk - WSIZE * prevfooter->size);
}
/* Given a block, obtain pointer to next block.
Not meaningful for right-most block. */
/*
* Given a block, obtains pointer to next block. Not meaningful for right-most block.
*/
static struct block *next_blk(struct block *blk) {
assert(blk_size(blk) != 0);
return (struct block *)((void *)blk + WSIZE * blk->header.size);
}
/* Given a block, obtain its footer boundary tag */
/*
* Given a block, obtain its footer boundary tag.
*/
static struct boundary_tag * get_footer(struct block *blk) {
return ((void *)blk + WSIZE * blk->header.size)
- sizeof(struct boundary_tag);
}
/* Set a block's size and inuse bit in header and footer */
/*
* Sets a block's size and inuse bit in header and footer.
*/
static void set_header_and_footer(struct block *blk, int size, int inuse) {
blk->header.inuse = inuse;
blk->header.size = size;
* get_footer(blk) = blk->header; /* Copy header to footer */
*get_footer(blk) = blk->header; // copies header to footer
}
/* Mark a block as used and set its size. */
/*
* Sets a block as used and sets its size.
*/
static void set_block_used(struct block *blk, int size) {
set_header_and_footer(blk, size, 1);
}
/* Mark a block as free and set its size. */
/*
* Sets a block as free and sets its size. Adds the block to a free list.
*/
static void set_block_free(struct block *blk, int size) {
set_header_and_footer(blk, size, 0);
list_push_front(find_list(0, size), &blk->elem);
list_push_front(find_list(0, size), &blk->elem); // (LIFO)
}
/*
* Initializes the memory manager.
*/
int mm_init(void)
{
assert (offsetof(struct block, payload) == 4);
assert (sizeof(struct boundary_tag) == 4);
/* Create the initial empty heap */
// Creates the initial empty heap.
struct boundary_tag * initial = mem_sbrk(4 * sizeof(struct boundary_tag));
if (initial == NULL)
return -1;
/* We use a slightly different strategy than suggested in the book.
* Rather than placing a min-sized prologue block at the beginning
* of the heap, we simply place two fences.
* The consequence is that coalesce() must call prev_blk_footer()
* and not prev_blk() because prev_blk() cannot be called on the
* left-most block.
/* We use a slightly different strategy than suggested in the book. Rather than placing a
* min-sized prologue block at the beginning of the heap, we simply place two fences. The
* consequence is that coalesce() must call prev_blk_footer() and not prev_blk() because
* prev_blk() cannot be called on the left-most block.
*/
initial[2] = FENCE; /* Prologue footer */
initial[2] = FENCE; // prologue header
heap_listp = (struct block *)&initial[3];
initial[3] = FENCE; /* Epilogue header */
initial[3] = FENCE; // epilogue header
for (int i = 0; i < NUM_LISTS; i++) {
// Initializes the free_lists.
for (int i = 0; i < NUM_LISTS; i++)
list_init(&free_lists[i]);
}
// Initializes list_sizes (powers of 2).
for (int i = 0; i < NUM_LISTS; i++) {
int size = 1;
for (int j = 0; j < i; j++) {
for (int j = 0; j < i; j++)
size *= 2;
}
list_sizes[i] = MIN_BLOCK_SIZE_WORDS * (size);
}
/* Extend the empty heap with a free block of CHUNKSIZE bytes */
// Extends the empty heap with a free block of CHUNKSIZE bytes.
if (extend_heap(CHUNKSIZE) == NULL)
return -1;
return 0;
}
/*
* The mm malloc routine returns a pointer to an allocated block payload of at
* least size bytes. The entire allocated block should lie within the heap region and should
* not overlap with any other allocated chunk.
* Returns a pointer to an allocated block with a payload of at least the given size in (bytes). The
* entire allocated block should lie within the heap region and should not overlap with other
* allocated blocks.
*/
void *mm_malloc(size_t size) {
struct block *blck;
if (size == 0) {
if (size == 0)
return NULL;
}
struct block *blck;
size_t words = max(MIN_BLOCK_SIZE_WORDS, align(size + DSIZE) / WSIZE);
/* Find fit for size */
// Attempts to find a block from the free lists that fit.
if ((blck = find_fit(words)) != NULL) {
place(blck, words);
place(blck, words); // malloc successful
return blck->payload;
}
if ((blck = extend_heap(words)) == NULL){
// Attempts to extend the heap to accomodate.
if ((blck = extend_heap(words)) == NULL)
return NULL;
}
place(blck, words);
return blck->payload;
return blck->payload; // malloc successful
}
void mm_free(void *bp)
{
assert (heap_listp != 0); // assert that mm_init was called
/*
* Frees the block pointed by the given pointer.
*/
void mm_free(void *bp) {
// Asserts that mm_init() was called.
assert (heap_listp != 0);
if (bp == 0)
return;
/* Find block from user pointer */
// Finds a block from the given pointer and frees it.
struct block *blk = bp - offsetof(struct block, payload);
size_t size = blk_size(blk);
set_block_free(blk, size);
set_block_free(blk, blk_size(blk));
coalesce(blk);
}
/*
* Frees the block pointed by the given pointer.
*/
void *mm_realloc(void *ptr, size_t size) {
size_t bytesize;
void *new_ptr;
if (ptr == NULL) {
// Equivalent to mallocing.
if (ptr == NULL)
return mm_malloc(size);
}
// Equivalent to freeing.
if (size == 0) {
mm_free(ptr);
return NULL;
@ -231,8 +261,8 @@ void *mm_realloc(void *ptr, size_t size) {
bool prev_alloc = prev_blk_footer(oldblock)->inuse;
bool next_alloc = !blk_free(next_blk(oldblock));
if (!next_alloc)
{
// CASE 1: The next block is free.
if (!next_alloc) {
struct block *right;
right = next_blk(oldblock);
list_remove(&right->elem);
@ -240,11 +270,11 @@ void *mm_realloc(void *ptr, size_t size) {
}
if (blk_size(oldblock) >= size) {
return oldblock->payload;
}
if (!prev_alloc)
{
return oldblock->payload; // reallocing was successful
}
// CASE 2: The previous block is free.
if (!prev_alloc) {
struct block *left;
left = prev_blk(oldblock);
list_remove(&left->elem);
@ -252,153 +282,152 @@ void *mm_realloc(void *ptr, size_t size) {
oldblock = left;
}
if (blk_size(oldblock) >= size)
{
if (blk_size(oldblock) >= size) {
bytesize = blk_size(oldblock) * WSIZE;
if(size < bytesize) bytesize = size;
if(size < bytesize)
bytesize = size;
memcpy(oldblock->payload, ptr, bytesize);
return oldblock->payload;
return oldblock->payload; // reallocing was successful
}
// DEFAULT:
new_ptr = mm_malloc(size);
if(!new_ptr) return 0;
if(!new_ptr)
return 0;
struct block *copyblk = ptr - offsetof(struct block, payload);
bytesize = blk_size(copyblk) * WSIZE; //find number of BYTES, not words
if(size < bytesize) bytesize = size;
bytesize = blk_size(copyblk) * WSIZE;
if(size < bytesize)
bytesize = size;
memcpy(new_ptr, ptr, bytesize);
mm_free(oldblock->payload);
return new_ptr;
}
/*
* Combines adjacent free blocks. Returns a pointer to the coalesced block.
*/
static struct block *coalesce(struct block *bp)
{
bool prev_alloc = prev_blk_footer(bp)->inuse; /* is previous block allocated? */
bool next_alloc = ! blk_free(next_blk(bp)); /* is next block allocated? */
int prev_alloc = prev_blk_footer(bp)->inuse; // previous block allocated?
int next_alloc = !blk_free(next_blk(bp)); // next block allocated?
size_t size = blk_size(bp);
if (prev_alloc && next_alloc) { /* Case 1 */
// both are allocated, nothing to coalesce
return bp;
}
else if (prev_alloc && !next_alloc) { /* Case 2 */
// combine this block and next block by extending it
list_remove(&bp->elem);
list_remove(&next_blk(bp)->elem);
size_t new_size = size + blk_size(next_blk(bp));
set_block_free(bp, new_size);
}
else if (!prev_alloc && next_alloc) { /* Case 3 */
// combine previous and this block by extending previous
list_remove(&prev_blk(bp)->elem);
list_remove(&bp->elem);
size_t new_size = blk_size(prev_blk(bp)) + size;
bp = prev_blk(bp);
set_block_free(bp, new_size);
}
else { /* Case 4 */
// combine all previous, this, and next block into one
list_remove(&prev_blk(bp)->elem);
list_remove(&bp->elem);
list_remove(&next_blk(bp)->elem);
size_t new_size = blk_size(prev_blk(bp)) + size + blk_size(next_blk(bp));
bp = prev_blk(bp);
set_block_free(bp, new_size);
// CASE 1: Both are allocated, nothing to coalesce.
if (prev_alloc && next_alloc)
return bp;
// CASE 2: Next block is free, combine with next block.
else if (prev_alloc && !next_alloc) {
list_remove(&bp->elem);
list_remove(&next_blk(bp)->elem);
size_t new_size = size + blk_size(next_blk(bp));
set_block_free(bp, new_size);
}
// CASE 3: Previous block is free, combine with previous block.
else if (!prev_alloc && next_alloc) {
list_remove(&prev_blk(bp)->elem);
list_remove(&bp->elem);
size_t new_size = blk_size(prev_blk(bp)) + size;
bp = prev_blk(bp);
set_block_free(bp, new_size);
}
// CASE 4: Previous and next blocks are free, combine with both.
else if (!prev_alloc && !next_alloc) {
list_remove(&prev_blk(bp)->elem);
list_remove(&bp->elem);
list_remove(&next_blk(bp)->elem);
size_t new_size = blk_size(prev_blk(bp)) + size + blk_size(next_blk(bp));
bp = prev_blk(bp);
set_block_free(bp, new_size);
}
return bp;
}
/*
* Extend heap with free block and return its block pointer
* Does not add new block to free list if called by realloc
* Extends the heap with free block and return its block pointer.
*/
static struct block *extend_heap(size_t words)
{
static struct block *extend_heap(size_t words) {
void *blck = mem_sbrk(words * WSIZE);
if (blck == NULL)
return NULL;
/* Initialize free block header, footer and epilogue header. */
/* Initializes a free block header, footer, and epilogue header. */
struct block * blk = blck - sizeof(FENCE);
set_block_free(blk, words);
next_blk(blk)->header = FENCE;
return coalesce(blk);
}
/*
* Allocate block of memory at address blck
* Allocates block of memory at address block.
*/
static void place(struct block *blck, size_t asize) {
// Removes the block since it's no longer free.
list_remove(&blck->elem);
size_t csize = blk_size(blck);
//~ print_lists();
list_remove(&blck->elem);
//~ print_lists();
size_t remaining_size = csize - asize;
// Determines if the block has extra space that can be freed.
if (remaining_size >= MIN_BLOCK_SIZE_WORDS) {
set_block_used(blck, asize);
blck = next_blk(blck);
set_block_free(blck, remaining_size);
//~ print_lists();
}
else {
set_block_used(blck, csize);
}
else
set_block_used(blck, csize);
}
/**
* Find free list with blocks of given size
/*
* Finds a free list that can fit a block with the given size (in words).
*
* not_empty == 0, find "any" list
* not_empty == 1, find a not empty list
* not_empty == 1, find a non-empty list
*/
static struct list* find_list(int not_empty, size_t n_words) {
// Parses the segregated free lists.
for (int i = 0; i < NUM_LISTS; i++) {
/*
* Attempts to return the current list if...
* a.) the given size is less than/equal to the current list's max size.
* b.) the current list is the last one.
*/
if ((n_words <= list_sizes[i]) || (i == (NUM_LISTS - 1))) {
if (not_empty && list_empty(&free_lists[i])) {
// Continues searching if a non-empty list is needed and the current list is empty.
if (not_empty && list_empty(&free_lists[i]))
continue;
}
return &free_lists[i];
}
}
return NULL;
}
/*
* Find a fit for a block with num_words
* Finds a free block that fits the given size (in words).
*/
static struct block *find_fit(size_t num_words)
{
static struct block *find_fit(size_t num_words) {
// Selects a free list that contains a free block that fits.
struct list* free_list = find_list(1, num_words);
if (free_list == NULL) {
return NULL;
}
if (free_list == NULL)
return NULL;
/* Search for block from selected free list*/
// Searches for a free block from the selected free list that fits. (LIFO)
for (struct list_elem* e = list_back(free_list); e != list_head(free_list); e = list_prev(e)) {
struct block* bp = list_entry(e, struct block, elem);
if (num_words <= blk_size(bp)) {
if (num_words <= blk_size(bp))
return bp;
}
}
return NULL;
}